The role of micromere signaling in Notch activation and mesoderm specification during sea urchin embryogenesis.
نویسندگان
چکیده
In the sea urchin embryo, the micromeres act as a vegetal signaling center. These cells have been shown to induce endoderm; however, their role in mesoderm development has been less clear. We demonstrate that the micromeres play an important role in the induction of secondary mesenchyme cells (SMCs), possibly by activating the Notch signaling pathway. After removing the micromeres, we observed a significant delay in the formation of all mesodermal cell types examined. In addition, there was a marked reduction in the numbers of pigment cells, blastocoelar cells and cells expressing the SMC1 antigen, a marker for prospective SMCs. The development of skeletogenic cells and muscle cells, however, was not severely affected. Transplantation of micromeres to animal cells resulted in the induction of SMC1-positive cells, pigment cells, blastocoelar cells and muscle cells. The numbers of these cell types were less than those found in sham transplantation control embryos, suggesting that animal cells are less responsive to the micromere-derived signal than vegetal cells. Previous studies have demonstrated a role for Notch signaling in the development of SMCs. We show that the micromere-derived signal is necessary for the downregulation of the Notch protein, which is correlated with its activation, in prospective SMCs. We propose that the micromeres induce adjacent cells to form SMCs, possibly by presenting a ligand for the Notch receptor.
منابع مشابه
The establishment and patterning of the three germ layers in the sea urchin embryo are regulated by a signaling cascade that originates from the micromere descendants at the vegetal pole
The establishment and patterning of the three germ layers in the sea urchin embryo are regulated by a signaling cascade that originates from the micromere descendants at the vegetal pole of the embryo (reviewed by Angerer and Angerer, 2000; Ettensohn and Sweet, 2000). The powerful signaling properties of micromeres were first reported by Hörstadius, who showed that these cells can induce the fo...
متن کاملKrüppel-like is required for nonskeletogenic mesoderm specification in the sea urchin embryo.
The canonical Wnt pathway plays a central role in specifying vegetal cell fate in sea urchin embryos. SpKrl has been cloned as a direct target of nuclear beta-catenin. Using Hemicentrotus pulcherrimus embryos, here we show that HpKrl controls the specification of secondary mesenchyme cells (SMCs) through both cell-autonomous and non-autonomous means. Like SpKrl, HpKrl was activated in both micr...
متن کاملLvDelta is a mesoderm-inducing signal in the sea urchin embryo and can endow blastomeres with organizer-like properties.
Signals from micromere descendants play a critical role in patterning the early sea urchin embryo. Previous work demonstrated a link between the induction of mesoderm by micromere descendants and the Notch signaling pathway. In this study, we demonstrate that these micromere descendants express LvDelta, a ligand for the Notch receptor. LvDelta is expressed by micromere descendants during the bl...
متن کاملNuclear β-catenin is required to specify vegetal cell fates in the sea urchin embryo
β-catenin is thought to mediate cell fate specification events by localizing to the nucleus where it modulates gene expression. To ask whether β-catenin is involved in cell fate specification during sea urchin embryogenesis, we analyzed the distribution of nuclear β-catenin in both normal and experimentally manipulated embryos. In unperturbed embryos, β-catenin accumulates in nuclei that includ...
متن کاملNuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo.
Beta-catenin is thought to mediate cell fate specification events by localizing to the nucleus where it modulates gene expression. To ask whether beta-catenin is involved in cell fate specification during sea urchin embryogenesis, we analyzed the distribution of nuclear beta-catenin in both normal and experimentally manipulated embryos. In unperturbed embryos, beta-catenin accumulates in nuclei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 126 23 شماره
صفحات -
تاریخ انتشار 1999